Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677879

RESUMO

In drug discovery, compounds with well-defined activity against multiple targets (multitarget compounds, MT-CPDs) provide the basis for polypharmacology and are thus of high interest. Typically, MT-CPDs for polypharmacology have been discovered serendipitously. Therefore, over the past decade, computational approaches have also been adapted for the design of MT-CPDs or their identification via computational screening. Such approaches continue to be under development and are far from being routine. Recently, different machine learning (ML) models have been derived to distinguish between MT-CPDs and corresponding compounds with activity against the individual targets (single-target compounds, ST-CPDs). When evaluating alternative models for predicting MT-CPDs, we discovered that MT-CPDs could also be accurately predicted with models derived for corresponding ST-CPDs; this was an unexpected finding that we further investigated using explainable ML. The analysis revealed that accurate predictions of ST-CPDs were determined by subsets of structural features of MT-CPDs required for their prediction. These findings provided a chemically intuitive rationale for the successful prediction of MT-CPDs using different ML models and uncovered general-feature subset relationships between MT- and ST-CPDs with activities against different targets.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Polifarmacologia
2.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232749

RESUMO

This study aimed to extend the body of preclinical research on prototype dual-acting compounds combining the pharmacophores relevant for inhibiting cyclic nucleotide phosphodiesterase 10 (PDE10A) and serotonin 5-HT1A/5-HT7 receptor (5-HT1AR/5-HT7R) activity into a single chemical entity (compounds PQA-AZ4 and PQA-AZ6). After i.v. administration of PQA-AZ4 and PQA-AZ6 to rats, the brain to plasma ratio was 0.9 and 8.60, respectively. After i.g. administration, the brain to plasma ratio was 5.7 and 5.3, respectively. An antidepressant-like effect was observed for PQA-AZ6 in the forced swim test, after chronic 21-day treatment via i.p. administration with 1 mg/kg/day. Both compounds revealed an increased level of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus and prefrontal cortex. Moreover, PQA-AZ4 and PQA-AZ6 completely reversed (+)-MK801-induced memory disturbances comparable with the potent PDE10 inhibitor, compound PQ-10. In the safety profile that included measurements of plasma glucose, triglyceride, and total cholesterol concentration, liver enzyme activity, the total antioxidant activity of serum, together with weight gain, compounds exhibited no significant activity. However, the studied compounds had different effects on human normal fibroblast cells as revealed in in vitro assay. The pharmacokinetic and biochemical results support the notion that these novel dual-acting compounds might offer a promising therapeutic tool in CNS-related disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Demência , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antioxidantes , Disponibilidade Biológica , Glicemia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colesterol , Maleato de Dizocilpina , Humanos , Transtornos da Memória/tratamento farmacológico , Nucleotídeos Cíclicos , Diester Fosfórico Hidrolases , RNA Mensageiro , Ratos , Serotonina/metabolismo , Triglicerídeos
3.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956896

RESUMO

In recent decades, molecular hybridization has proven to be an efficient tool for obtaining new synthetic molecules to treat different diseases. Based on the core idea of covalently combining at least two pharmacophore fragments present in different drugs and/or bioactive molecules, the new hybrids have shown advantages when compared with the compounds of origin. Hybridization could be successfully applied to anticancer drug discovery, where efforts are underway to develop novel therapeutics which are safer and more effective than those currently in use. Molecules presenting naphthoquinone moieties are involved in redox processes and in other molecular mechanisms affecting cancer cells. Naphthoquinones have been shown to inhibit cancer cell growth and are considered privileged structures and useful templates in the design of hybrids. The present work aims at summarizing the current knowledge on antitumor hybrids built using 1,4- and 1,2-naphthoquinone (present in natural compounds as lawsone, napabucasin, plumbagin, lapachol, α-lapachone, and ß -lapachone), and the related quinolone- and isoquinolinedione scaffolds reported in the literature up to 2021. In detail, the design and synthetic approaches adopted to produce the reported compounds are highlighted, the structural fragments considered in hybridization and their biological activities are described, and the structure-activity relationships and the computational analyses applied are underlined.


Assuntos
Antineoplásicos , Naftoquinonas , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Naftoquinonas/química , Naftoquinonas/farmacologia , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 229: 114054, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34959172

RESUMO

The human kinome plays a crucial role in several pathways. Its dysregulation has been linked to diverse central nervous system (CNS)-related disorders with a drastic impact on the aging population. Among them, tauopathies, such as Alzheimer's Disease (AD) and Frontotemporal Lobar degeneration (FTLD-tau), are neurodegenerative disorders pathologically defined by the presence of hyperphosphorylated tau-positive intracellular inclusions known as neurofibrillary tangles (NFTs). Compelling evidence has reported the great potential of the simultaneous modulation of multiple protein kinases (PKs) involved in abnormal tau phosphorylation through a concerted pharmacological approach to achieve a superior therapeutic effect relative to classic "one target, one drug" approaches. Here, we report on the identification and characterization of ARN25068 (4), a low nanomolar and well-balanced dual GSK-3ß and FYN inhibitor, which also shows inhibitory activity against DYRK1A, an emerging target in AD and tauopathies. Computational and X-Ray studies highlight compound 4's typical H-bonding pattern of ATP-competitive inhibitors at the binding sites of all three PKs. In a tau phosphorylation assay on Tau0N4R-TM-tGFP U2OS cell line, 4 reduces the extent of tau phosphorylation, promoting tau-stabilized microtubule bundles. In conclusion, this compound emerges as a promising prototype for further SAR explorations to develop potent and well-balanced triple GSK-3ß/FYN/DYRK1A inhibitors to tackle tau hyperphosphorylation.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Fármacos Neuroprotetores/síntese química , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Tauopatias/tratamento farmacológico , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Emaranhados Neurofibrilares/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Proteínas tau/metabolismo
5.
Eur J Med Chem ; 226: 113895, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624821

RESUMO

We report the synthesis of novel first-in-class 2-oxindole-based derivatives as dual PDK1-AurA kinase inhibitors as a novel strategy to treat Ewing sarcoma. The most potent compound 12 is suitable for progression to in vivo studies. The specific attributes of 12 included nanomolar inhibitory potency against both phosphoinositide-dependent kinase-1 (PDK1) and Aurora A (AurA) kinase, with acceptable in vitro ADME-Tox properties (cytotoxicity in 2 healthy and 14 hematological and solid cancer cell-lines; inhibition of PDE4C1, SIRT7, HDAC4, HDAC6, HDAC8, HDAC9, AurB, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and hERG). X-ray crystallography and docking studies led to the identification of the key AurA and PDK1/12 interactions. Finally, in vitro drug-intake kinetics and in vivo PK appear to indicate that these compounds are attractive lead-structures for the design and synthesis of PDK1/AurA dual-target molecules to further investigate the in vivo efficacy against Ewing Sarcoma.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Desenvolvimento de Medicamentos , Oxindóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Aurora Quinase A/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis/síntese química , Oxindóis/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Relação Estrutura-Atividade
6.
ACS Chem Neurosci ; 12(19): 3638-3649, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34529404

RESUMO

In the search for novel bitopic compounds targeting the dopamine D3 receptor (D3R), the N-(2,3-dichlorophenyl)piperazine nucleus (primary pharmacophore) has been linked to the 6,6- or 5,5-diphenyl-1,4-dioxane-2-carboxamide or the 1,4-benzodioxane-2-carboxamide scaffold (secondary pharmacophore) by an unsubstituted or 3-F-/3-OH-substituted butyl chain. This scaffold hybridization strategy led to the discovery of potent D3R-selective or multitarget ligands potentially useful for central nervous system disorders. In particular, the 6,6-diphenyl-1,4-dioxane derivative 3 showed a D3R-preferential profile, while an interesting multitarget behavior has been highlighted for the 5,5-diphenyl-1,4-dioxane and 1,4-benzodioxane derivatives 6 and 9, respectively, which displayed potent D2R antagonism, 5-HT1AR and D4R agonism, as well as potent D3R partial agonism. They also behaved as low-potency 5-HT2AR antagonists and 5-HT2CR partial agonists. Such a profile might be a promising starting point for the discovery of novel antipsychotic agents.


Assuntos
Antipsicóticos , Doenças do Sistema Nervoso Central , Doenças do Sistema Nervoso Central/tratamento farmacológico , Dopamina , Humanos , Ligantes
7.
Brain Sci ; 11(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810622

RESUMO

A new hypothesis highlights sleep-dependent learning/memory consolidation and regards the sleep-wake cycle as a modulator of ß-amyloid and tau Alzheimer's disease (AD) pathologies. Sundowning behavior is a common neuropsychiatric symptom (NPS) associated with dementia. Sleep fragmentation resulting from disturbances in sleep and circadian rhythms in AD may have important consequences on memory processes and exacerbate the other AD-NPS. The present work studied the effect of training time schedules on 12-month-old male 3xTg-AD mice modeling advanced disease stages. Their performance in two paradigms of the Morris water maze for spatial-reference and visual-perceptual learning and memory were found impaired at midday, after 4 h of non-active phase. In contrast, early-morning trained littermates, slowing down from their active phase, exhibited better performance and used goal-directed strategies and non-search navigation described for normal aging. The novel multitarget anticholinesterasic compound AVCRI104P3 (0.6 µmol·kg-1, 21 days i.p.) exerted stronger cognitive benefits than its in vitro equipotent dose of AChEI huprine X (0.12 µmol·kg-1, 21 days i.p.). Both compounds showed streamlined drug effectiveness, independently of the schedule. Their effects on anxiety-like behaviors were moderate. The results open a question of how time schedules modulate the capacity to respond to task demands and to assess/elucidate new drug effectiveness.

9.
Molecules ; 25(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731576

RESUMO

In the present contribution, we analyze the influence that C-terminal extension of short opioid peptide sequences by organic fragments has on receptor affinity, in vivo analgesic activity, and antimelanoma properties. The considered fragments were based on either N-acylhydrazone (NAH) or N'-acylhydrazide motifs combined with the 3,5-bis(trifluoromethyl)phenyl moiety. Eleven novel compounds were synthesized and subject to biological evaluation. The analyzed compounds exhibit a diversified range of affinities for the µ opioid receptor (MOR), rather low δ opioid receptor (DOR) affinities, and no appreciable neurokinin-1 receptor binding. In three out of four pairs, N-acylhydrazone-based derivatives bind MOR better than their N'-acylhydrazide counterparts. The best of the novel derivatives have similar low nanomolar MOR binding affinity as the reference opioids, such as morphine and biphalin. The obtained order of MOR affinities was compared to the results of molecular docking. In vivo, four tested compounds turned out to be relatively strong analgesics. Finally, the NAH-based analogues reduce the number of melanoma cells in cell culture, while their N'-acylhydrazide counterparts do not. The antimelanoma properties are roughly correlated to the lipophilicity of the compounds.


Assuntos
Analgésicos , Citotoxinas , Hidrazonas/química , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Peptídeos Opioides , Analgésicos/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Linhagem Celular Tumoral , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patologia , Peptídeos Opioides/síntese química , Peptídeos Opioides/química , Peptídeos Opioides/farmacologia , Ratos , Ratos Wistar , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo
10.
Bioorg Chem ; 96: 103633, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032848

RESUMO

We synthesized a set of new hybrid derivatives (7-C8, 7-C10, 7-C12 and 8-C8, 8-C10, 8-C12), in which a polymethylene spacer chain of variable length connected the pharmacophoric moiety of xanomeline, an M1/M4-preferring orthosteric muscarinic agonist, with that of tacrine, a well-known acetylcholinesterase (AChE) inhibitor able to allosterically modulate muscarinic acetylcholine receptors (mAChRs). When tested in vitro in a colorimetric assay for their ability to inhibit AChE, the new compounds showed higher or similar potency compared to that of tacrine. Docking analyses were performed on the most potent inhibitors in the series (8-C8, 8-C10, 8-C12) to rationalize their experimental inhibitory power against AChE. Next, we evaluated the signaling cascade at M1 mAChRs by exploring the interaction of Gαq-PLC-ß3 proteins through split luciferase assays and the myo-Inositol 1 phosphate (IP1) accumulation in cells. The results were compared with those obtained on the known derivatives 6-C7 and 6-C10, two quite potent AChE inhibitors in which tacrine is linked to iperoxo, an exceptionally potent muscarinic orthosteric activator. Interestingly, we found that 6-C7 and 6-C10 behaved as partial agonists of the M1 mAChR, at variance with hybrids 7-Cn and 8-Cn containing xanomeline as the orthosteric molecular fragment, which were all unable to activate the receptor subtype response.


Assuntos
Inibidores da Colinesterase/farmacologia , Isoxazóis/farmacologia , Piridinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Receptor Muscarínico M1/metabolismo , Tacrina/farmacologia , Tiadiazóis/farmacologia , Acetilcolinesterase/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Células CHO , Inibidores da Colinesterase/química , Cricetulus , Electrophorus , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Ligantes , Simulação de Acoplamento Molecular , Piridinas/síntese química , Piridinas/química , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Receptor Muscarínico M1/agonistas , Tacrina/análogos & derivados , Tacrina/síntese química , Tiadiazóis/síntese química , Tiadiazóis/química
11.
Future Med Chem ; 11(16): 2063-2079, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31538521

RESUMO

Aim: Barbiturates have a long history of being used as drugs presenting wide varieties of biological activities (antimicrobial, anti-urease and antioxidant). Reactive oxygen species are associated with inflammation implicated in cancer, atherosclerosis and autoimmune diseases. Multitarget agents represent a powerful approach to the therapy of complicated inflammatory diseases. Results: A novel series of barbiturates has been synthesized and evaluated in several in vitro assays. Compound 16b (lipoxygenases inhibitor, 55.0 µM) was found to be a cyclooxygenase-2 inhibitor (27.5 µM). Compound 8b was profiled as a drug-like candidate. Conclusion: The barbiturate core represents a new scaffold for lipoxygenases inhibition, and the undertaken derivatives show promise as multiple-target agents to combat inflammatory diseases.


Assuntos
Barbitúricos/síntese química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Lipoxigenase/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Animais , Barbitúricos/química , Barbitúricos/farmacologia , Técnicas de Química Sintética/métodos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Humanos , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Modelos Moleculares , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Eur J Med Chem ; 183: 111674, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518969

RESUMO

Polypharmacology approaches may help the discovery of pharmacological tools for the study or the potential treatment of complex and multifactorial diseases as well as for addictions and also smoke cessation. In this frame, following our interest in the development of molecules able to modulate either the endocannabinoid or the dopaminergic system, and given the multiple and reciprocal interconnections between them, we decided to merge the pharmacophoric elements of some of our early leads for identifying new molecules as tools able to modulate both systems. We herein describe the synthesis and biological characterization of compounds 5a-j inspired by the structure of our potent and selective fatty acid amide hydrolase (FAAH) inhibitors (3a-c) and ligands of dopamine D2 or D3 receptor subtypes (4a,b). Notably, the majority of the new molecules showed a nanomolar potency of interaction with the targets of interest. The drug-likeliness of the developed compounds (5a-j) was investigated in silico while hERG affinity, selectivity profile (for some proteins of the endocannabinoid system), cytotoxicity profiles (on fibroblast and astrocytes), and mutagenicity (Ames test) were experimentally determined. Metabolic studies also served to complement the preliminary drug-likeliness profiling for compounds 3a and 5c. Interestingly, after assessing the lack of toxicity for the neuroblastoma cell line (IMR 32), we demonstrated a potential anti-inflammatory profile for 3a and 5c in the same cell line.


Assuntos
Amidoidrolases/antagonistas & inibidores , Dopamina/metabolismo , Endocanabinoides/metabolismo , Amidoidrolases/metabolismo , Ligação Competitiva , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Piperazinas/química , Piperazinas/farmacologia , Pirróis/química , Pirróis/farmacologia
13.
Eur J Med Chem ; 180: 613-626, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351393

RESUMO

The development of multitarget compounds against multifactorial diseases, such as Alzheimer's disease, is an area of very intensive research, due to the expected superior therapeutic efficacy that should arise from the simultaneous modulation of several key targets of the complex pathological network. Here we describe the synthesis and multitarget biological profiling of a new class of compounds designed by molecular hybridization of an NMDA receptor antagonist fluorobenzohomoadamantanamine with the potent acetylcholinesterase (AChE) inhibitor 6-chlorotacrine, using two different linker lengths and linkage positions, to preserve or not the memantine-like polycyclic unsubstituted primary amine. The best hybrids exhibit greater potencies than parent compounds against AChE (IC50 0.33 nM in the best case, 44-fold increased potency over 6-chlorotacrine), butyrylcholinesterase (IC50 21 nM in the best case, 24-fold increased potency over 6-chlorotacrine), and NMDA receptors (IC50 0.89 µM in the best case, 2-fold increased potency over the parent benzohomoadamantanamine and memantine), which suggests an additive effect of both pharmacophoric moieties in the interaction with the primary targets. Moreover, most of these compounds have been predicted to be brain permeable. This set of biological properties makes them promising leads for further anti-Alzheimer drug development.


Assuntos
Adamantano/farmacologia , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Tacrina/análogos & derivados , Acetilcolinesterase/metabolismo , Adamantano/análogos & derivados , Adamantano/química , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Tacrina/química , Tacrina/farmacologia
14.
Eur J Med Chem ; 148: 255-267, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29466775

RESUMO

Alzheimer's disease (AD) is a severe age-dependent neurodegenerative disorder affecting millions of people, with no cure so far. The current treatments only achieve some temporary amelioration of the cognition symptoms. The main characteristics of the patient brains include the accumulation of amyloid plaques and neurofibrillary tangles (outside and inside the neurons) but also cholinergic deficit, increased oxidative stress and dyshomeostasis of transition metal ions. Considering the multi-factorial nature of AD, we report herein the development of a novel series of potential multi-target directed drugs which, besides the capacity to recover the cholinergic neurons, can also target other AD hallmarks. The novel series of tacrine-hydroxyphenylbenzimidazole (TAC-BIM) hybrid molecules has been designed, synthesized and studied for their multiple biological activities. These agents showed improved AChE inhibitory activity (IC50 in nanomolar range), as compared with the single drug tacrine (TAC), and also a high inhibition of self-induced- and Cu-induced-Aß aggregation (up to 75%). They also present moderate radical scavenging activity and metal chelating ability. In addition, neuroprotective studies revealed that all these tested compounds are able to inhibit the neurotoxicity induced by Aß and Fe/AscH(-) in neuronal cells. Hence, for this set of hybrids, structure-activity relationships are discussed and finally it is highlighted their real promising interest as potential anti-AD drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzimidazóis/química , Tacrina/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Benzimidazóis/farmacologia , Inibidores da Colinesterase/farmacologia , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Agregação Patológica de Proteínas/prevenção & controle , Tacrina/farmacologia
15.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01010, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974423

RESUMO

The pharmaceutical industry is increasingly joining chemoinformatics in the search for the development of new drugs to be used in the treatment of diseases. These computational studies have the advantage of being less expensive and optimize the study time, and thus the interest in this area is increasing. Among the techniques used is the development of multitarget directed ligands (MTDLs), which has become an ascending technique, mainly due to the improvement in the quality of treatment involving several drugs. Multitarget therapy is more effective than traditional drug therapy that emphasizes maximum selectivity for a single target. In this review a multitarget drug survey was carried out as a promising strategy in several important diseases: neglected diseases, neurodegenerative diseases, AIDS, and cancer. In addition, we discuss Computer-Aided Drug Design (CADD) techniques as a tool in the projection of multitarget compounds against these diseases.


Assuntos
Simulação por Computador/estatística & dados numéricos , Desenho de Fármacos , Design de Software , Doença/classificação , Medicamentos de Referência
17.
Future Med Chem ; 9(10): 953-963, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28632446

RESUMO

AIM: Alzheimer pathogenesis has been associated with a network of processes working simultaneously and synergistically. Over time, much interest has been focused on cholinergic transmission and its mutual interconnections with other active players of the disease. Besides the cholinesterase mainstay, the multifaceted interplay between nicotinic receptors and amyloid is actually considered to have a central role in neuroprotection. Thus, the multitarget drug-design strategy has emerged as a chance to face the disease network. METHODS: By exploiting the multitarget approach, hybrid compounds have been synthesized and studied in vitro and in silico toward selected targets of the cholinergic and amyloidogenic pathways. RESULTS: The new molecules were able to target the cholinergic system, by joining direct nicotinic receptor stimulation to acetylcholinesterase inhibition, and to inhibit amyloid-ß aggregation. CONCLUSION: The compounds emerged as a suitable starting point for a further optimization process.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Transmissão Sináptica/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Humanos , Modelos Moleculares , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos
18.
Eur J Med Chem ; 127: 250-262, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28064079

RESUMO

Multi-target drug discovery is one of the most followed approaches in the active central nervous system (CNS) therapeutic area, especially in the search for new drugs against Alzheimer's disease (AD). This is because innovative multi-target-directed ligands (MTDLs) could more adequately address the complexity of this pathological condition. In a continuation of our efforts aimed at a new series of anti-AD MTDLs, we combined the structural features of the cholinesterase inhibitor drug tacrine with that of resveratrol, which is known for its purported antioxidant and anti-neuroinflammatory activities. The most interesting hybrid compounds (5, 8, 9 and 12) inhibited human acetylcholinesterase at micromolar concentrations and effectively modulated Aß self-aggregation in vitro. In addition, 12 showed intriguing anti-inflammatory and immuno-modulatory properties in neuronal and glial AD cell models. Importantly, the MTDL profile is accompanied by high-predicted blood-brain barrier permeability, and low cytotoxicity on primary neurons.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Terapia de Alvo Molecular , Estilbenos/química , Tacrina/química , Tacrina/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Humanos , Ligantes , Fígado/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Ratos , Resveratrol , Tacrina/metabolismo , Tacrina/uso terapêutico
19.
Expert Opin Ther Pat ; 27(5): 579-590, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28024125

RESUMO

INTRODUCTION: curcumin is the main bioactive component contained in Curcuma Longa, largely employed in traditional medicine. Recently, beneficial properties, useful for prevention and treatment of several disorders, have been discovered for this compound. Peculiar structural feature is an α,ß-unsaturated carbonyl system essential for establishing contacts with critical cysteine residues of several targets. This distinctive mechanism of action imparts to the molecule the ability to affect a large number of targets, accounting for its pleiotropic behaviour and definition of "privileged structure". Areas covered: The objective of the review is an examination of the recent developments in the field of the anti-cancer applications of curcumin, together with formulation issues, considering the patent literature in the years 2012-2016. Expert opinion: The wide therapeutic efficacy of curcumin is related to synergistic interactions with several biological targets, along with the modulation of several signaling pathways. This peculiar behaviour could be useful in the treatment of multifactorial diseases such as cancer. Combination of curcumin with a first line antineoplastic drug proved to be a valuable strategy to obtain an amplified response with minimized side effects. Innovative curcumin formulations based on the nanotechnology approach allowed improving both bioavailability and therapeutic efficacy.


Assuntos
Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Curcuma/química , Curcumina/farmacocinética , Curcumina/uso terapêutico , Desenho de Fármacos , Humanos , Nanotecnologia , Patentes como Assunto
20.
ACS Chem Neurosci ; 8(1): 100-114, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27797168

RESUMO

The poor prognosis of glioblastoma multiforme (GBM) is mainly attributed to drug resistance mechanisms and to the existence of a subpopulation of glioma stem cells (GSCs). Multitarget compounds able to both affect different deregulated pathways and the GSC subpopulation could escape tumor resistance and, most importantly, eradicate the stem cell reservoir. In this respect, the simultaneous inhibition of phosphoinositide-dependent kinase-1 (PDK1) and aurora kinase A (AurA), each one playing a pivotal role in cellular survival/migration/differentiation, could represent an innovative strategy to overcome GBM resistance and recurrence. Herein, the cross-talk between these pathways was investigated, using the single-target reference compounds MP7 (PDK1 inhibitor) and Alisertib (AurA inhibitor). Furthermore, a new ligand, SA16, was identified for its ability to inhibit the PDK1 and the AurA pathways at once, thus proving to be a useful tool for the simultaneous inhibition of the two kinases. SA16 blocked GBM cell proliferation, reduced tumor invasiveness, and triggered cellular apoptosis. Most importantly, the AurA/PDK1 blocker showed an increased efficacy against GSCs, inducing their differentiation and apoptosis. To the best of our knowledge, this is the first report on combined targeting of PDK1 and AurA. This drug represents an attractive multitarget lead scaffold for the development of new potential treatments for GBM and GSCs.


Assuntos
Apoptose/fisiologia , Aurora Quinase A/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neoplásicas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose/efeitos dos fármacos , Aurora Quinase A/genética , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/metabolismo , Células-Tronco/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...